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Oligomeric backbones with well-defined conformational pro-
pensities can serve as scaffolds for displaying sets of functional
groups in specific three-dimensional arrangements. This approach
has generated molecules that bind specifically to other moleculesA R
and/or manifest selective biological activity.5-Peptides are \Q/ .
particularly interesting as scaffolds because several distinct second-
ary structures can be induced by appropriate choicg-amino
acid substitution patterhThe S-peptide 12-helix (defined by 12-
membered ring €0(i)- -H—N(i + 3) hydrogen bonds) merits
special attention as this helix bears some resemblance tcltleéx
commonly formed by conventional peptideé/e have previously
shown that the 12-helix is promoted by residues containing a five-
membered ring constraint, and thapeptides containing as few
as six appropriately constrained residues adopt 12-helical conforma-
tions in aqueous solution.

Here we show that 12-helical propensity is maintained when
some cyclic f-amino acid residues are replaced with acyclic
residues. This result is important because use of acyclic residues®
greatly facilitates introduction of diverse side chains at specific sites
along the 12-helical scaffold. We demonstrate the utility of this
advance in the context of antibiotic design.

Figure 1. NOEs between nonadjacent residues 2ofA) and 3 (B) in
methanol, and fo in water (C). Unambiguous NOEs (solid); possible

H 0 " H— R R K NH, NOEs that are ambiguous because of resonance overlap (dotted). R
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i 5 llj/n % %’,H .3 B-peptide helicity2¢all four S-peptides display a characteristic 12-
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around 222 nm. Water destabiliz8speptide helices relative to
methanol, especially fof-peptides composed solely of acyclic
Initial studies involved hept&-peptidesl—4, which contain three  resjdueseCD data forl—3 in water retain the 12-helical pattern,
different residues: [®,2R)-trans-2-aminocyclopentanecarboxylic  although the intensity is diminished relative to methanol in each
acid (rans-2-ACPC)% (3S4R)-trans-3-aminopyrrolidine-4-car-  case, and the maximum is blue-shifted2nm. For4 the minimum
boxylic acid frans-3,4-APC}* and (R)-3*-homolysine g3-hLys)” completely disappears in water. The CD data suggest that 12-helix
Seebach et al. and others have reported extensive studies ofgrmation is possible in methanol when up to three cyclically
B-peptides containing acyclic residueg;peptides containing  constrained residues in a heptamer are replaced fitesidues.
exclusivelyp-residues adopt the 14-helix (defined by 14-membered |n water, on the other hand, 12-helix formation seems to require
ring C=0(j)- -H—N(i — 2) hydrogen bonds)® Enantiomerically ~  that at least five of the seven residues be constrained.
pure f*residues are easily prepared from the corresponding Previous studies have identified three types of NOE between
enantiomerically pure-amino acids,which provides ready access  backbone protons on nonadjacent residues that are characteristic
to a large set of side chains. In series4, the cationictrans-3,4- of the 8-peptide 12-helix: @H; — NHi;2, Cs Hi— C,Hioand G
APC residues are progressively replaced by catigffidLys Hi — NHi;3.45® For both2 and 3, numerous nonadjacent residue
residue$ (prepared fromo-lysine, so that configuration at C3  NOEs are observed in methanol; all are consistent with high
matchestrans-3,4-APC). -Peptides1—4 bear an N-terminal  population of the 12-helix (Figure 1A,B). These data show that the
p-methoxyphenacyl group; the aromatic ring was intended to g3-hLys residues have been incorporated into the 12-helix in
enhancéH NMR dispersion. methanol, because some of the characteristic NOEs involve or span
these acyclic residues.
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Figure 2. Sequence (A) and 12-helical wheel diagram (B)of

to >1 mM. Proton resonance dispersion fowas lower in water
than in methanol, which further hampered analysis. Nevertheless,
several characteristic backbone NOEs involving nonadjacent resi-
dues could be unambiguously identified (Figure 1C). Two of these
NOEs involve®-HLys-6. Thus, the NMR data fa indicate that

a f*-residue can be incorporated into a short 12-helix in aqueous
solution.

We turned to antimicrobial activity for an operational test of
our conclusion that 12-helical propensity is retained after partial
replacement of cyclic residues with acyclic residues. Conventional
peptides ¢-amino acid residues) that can adopt amphiphilic
o-helical conformations and bear a net positive charge fre-
guently display antimicrobial activitiX DeGrado et at*€ have
shown thay3-peptides containing exclusivef-residues are toxic
to Escherichia colilndependently, we have shown that a 17-residue
B-peptide (5-17") constructed frontrans1,2-ACPC andrans
3,4-APC, in a sequence that generates an amphiphilic 12-helix,
displays antimicrobial activity toward four bacterial spec&shis
spectrum of activity is comparable to that of natural host-defense
peptides, like the magainidsThe parallel betweefi-17 and natural

host-defense peptides includes a low tendency to cause human red

blood cell rupture (low hemolytic activity’11

[-Peptide5 (Figure 2A) represents a new antimicrobial design
in which the six 3-hLeu residues are intended to form the
hydrophobic surface of an amphiphilic 12-helix. Figure 2B shows
a projection along the 12-helical axis, assuming 2.5 residues per
turn52The six cationidrans-3,4-APC residues are distributed (along
with thetrans2-ACPC residues) along 3/5 of the helix circumfer-
ence, and th@3-hLeu residues occupy the other 2/5. We evaluated
antimicrobial activity against strains &. coli (JM109, ref 12a),
Bacillus subtilis(BR151, ref 12b)Staphylococcus aurey$206,
penicillin-, spectinomycin- and erythromycin-resistant, ref 12c) and
Enterococcus faeciurfA436, vancomycin-resistant, ref 12d). In
all four cases$, mimimum inhibitory concentrations (MIC) were
comparable to those previously determined th7 2¢ 5-Peptide
5 is slightly more hemolytic than i§-172 but 5 is comparable in
hemolytic activity to a synthetic magainin Il analogu€D data
for 5 showed a strong 12-helix signature in MeOH, and a weaker
12-helix signature in watér.

Our results show that acyclif®-amino acid residues can be
incorporated into th@-peptide 12-helix if most of the residues are
appropriately preorganized for 12-helical folding. This result is
important in terms of-peptide conformational preferences, adding

to previous evidence thgb-residues are quite malleabs¥s-Pep-
tides constructed exclusively froft-residues adopt the 14-helix
rather than the 12-heli&? Alternation of 53-residues angs?-
residues (side chain at tliecarbon) can generate a third helical
secondary structure, the 10/12-héfixAll three helices require
gauchetype (G=)CC,—C;sN torsion angles, although the precise
torsion angles vary3*-Residues can also be incorporated into sheet
secondary structure, where they may display eig#rcheor anti
torsion angles? Our findings are of practical importance because
they delineate an efficient path to creating 12-heli¢adeptides
with diverse arrays of surface functionaliy.

Supporting Information Available: CD, NMR, MIC and hemoly-
sis data for5 and reference peptides (PDF). This material is available
free of charge via the Internet at http:/pubs.acs.org.
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